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Abstract
In this paper we show that the physical properties of the Lagrange points of
large planets could provide an effective mechanism for trapping dark matter, if
dark matter really exists in our solar system. Certainly, the familiar trapping
mechanism of a potential well combined with some dissipative processes is
not a good candidate for particles like WIMPs which are supposed to be very
slippery. However, in each of the Lagrange regions, L4 and L5, of large planets
the potential has a maximum which together with the Coriolis force provides
an effective trapping mechanism without the need of any kind of friction. This
is a purely inertial and gravitational mechanism with no assumptions on other
possible interactions. Hence if the density of dark matter is not negligible in this
part of the universe, a direct experiment to be considered is the establishment
of a satellite in orbit around one of the stable Lagrange points, L4 or L5, of
Jupiter.

PACS numbers: 95.35.+d, 45.50.Jf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

One of the most intriguing results of modern astronomy is that the mass of all visible matter
(that is atomic matter as stars, dust and gas) is too small to explain the observed velocities
in galaxies and clusters of galaxies. Consequently, the total gravitational force required to
balance the centrifugal forces related to the observed velocities in galaxies is ascribed to the
visible matter plus some kind of ‘dark matter’ which has been a riddle in astronomy for
70 years. It appears now that there is at least ten times as much dark matter as atomic matter
and the formation of galaxies and galaxy clusters is totally dominated by the gravity of dark
matter [1]. The most striking information comes from gravitational lensing effects. The light
rays from distant galaxies are deflected where the space is curved by the gravitational influence
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of dark matter, making the shapes of the background galaxies appear distorted. Moreover,
observations of very distant objects revealed that the expansion of the universe is faster now
than it was in the past. This effect is ascribed to dark energy which accelerates the expansion.
Opinions whether weakly interacting massive particles (WIMPs) or dark matter exist also in
our solar system, vary considerably from author to author. Our aim is not to discuss here the
different points of view but to investigate where dark matter, if it exists in our neighbourhood,
could be found and hence, how it might be detected by means of an experiment which takes
into account only its inertio-gravitational properties and not its yet unknown interactions.

1.1. Potential hills and Coriolis forces versus potential wells and dissipation

A familiar mechanism which leads particles to be trapped in certain regions of space or, more
generally, a system in a certain range of parameters, is a potential well combined with some
dissipative process. In the absence of dissipation an incident particle entering a potential well
will leave it with the same energy. However, if this particle is subject to collisions with other
particles already existing there, its energy will be dissipated in the far degrees of freedom of the
system and so it might eventually be trapped inside. But dissipative processes are obviously
not good candidates for trapping particles like WIMPs, which are expected to interact only
weakly with the rest of the universe. If a falling meteorite remains on the surface of the Earth
this is due to van der waals forces depending on another coupling constant, the electric one,
while WIMPs will very likely penetrate the Earth crust as neutrinos do.

However, potential wells combined with dissipative processes are not the only trapping
mechanisms. For example, when the pivoting point of an inverted pendulum is subject to
some specific vertical oscillations, there is a dynamic stability region near its top position,
as predicted by the theory of the Mathieu–Hill equations; related phenomena are the phase-
lock loops in electronics. Similar situations appear in celestial mechanics in the restricted
three-body problem [2–5], where particles gather around the Lagrange points L4 and L5 of
the large planets. The latter are potential hills, and in this case the phenomenon responsible
for trapping is no longer due to an energy loss as in the case of the potential well, but to the
Coriolis force, which hinders the descent of the particles making them to spin around the hill.
See the discussion at the end of section 2, where we artificially altered the form of the Coriolis
term to better understand how the mechanism works.

The above trapping effect is in some way similar to the spiraling under the influence of a
magnetic field of a charged particle inside a Penning trap. Both Coriolis and Lorentz forces
are proportional and perpendicular to the velocity. Hence lowering the velocity by means of
some additional dissipative processes may have adverse effects.

1.2. Are there large regions in our solar system without WIMPs?

Before trying to see whether the Lagrange points could provide an effective mechanism for
trapping dark matter, let us first try to understand why this invisible but gravitationally active
material, if it exists, has not been detected earlier in our solar system3. A possible answer
is that most of the interplanetary WIMPs might have been scattered away by sling effects in
the last four and a half billion years, following the fate of the dust and other small objects
contained in a sphere of radius approximately equal to that of Neptune’s orbit. To explain

3 It is probably worthwhile to mention here an astounding observation related to the unexpected slowing down of
the Pioneer 10 and Pioneer 11 spacecraft [6], which are now traveling far beyond Neptune. Among the plausible
explanations, there is the possible pull back due to dark matter. It is interesting to note that this seems to be in
agreement with the above discussion that the sky has already been cleaned in the region of the large planets.
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this idea, consider the extreme case in which a particle is moving with a velocity v1 along a
circular orbit e.g. in the opposite direction of Jupiter. Let us suppose that this encounter is
quite close, so that this particle will be scattered back along the second branch of a narrow
hyperbola. If the particle is moving on an orbit similar to that of Jupiter, its initial velocity
is v1 = |v1|, where v1 ≈ −vJ , the velocity of Jupiter, and it will be scattered back with a
velocity v1 + 2vJ . This corresponds to a centrifugal force approximately nine times larger than
that required to remain on Jupiter’s orbit.

This example is certainly a limiting case and it is discussed here only for illustrative
purposes, but similar processes take place for a large class of orbits and incidence angles.
For example, if the incident particle moves on a great circle orthogonal to the ecliptic with
a velocity v1 ≈ vJ ,v1⊥vJ , before being scattered along the forward direction of the planet
with a velocity vJ +

√
v2

1 + v2
J , the centrifugal force acting on the scattered particle will be

approximatively (1 +
√

2)2 ≈ 5.82 times larger than that required to remain on Jupiter’s orbit.
Consequently, this particle will also be scattered on higher orbits. Even if the particles are
not scattered outside the solar system their density will diminish considerably in the region of
large planets.

1.3. The Lagrange points of large planets as possible regions where WIMPs might exist

Subjects related to the architecture of the solar system have been studied in the past, e.g. in
the classical book of Öpick [7], or in the more recent papers [8–10]. Our statement is that, if
WIMPs existed in the past in our solar system, we may find them nowadays only there where
the dynamical laws allow them to be. Such locations might be of course the interior of the large
bodies of the solar system, but also around the Lagrange points L4 and L5 of the large planets,
where otherwise much dust and many asteroids have accumulated over time. Moreover, in
contrast to the interior of the celestial bodies, they have the advantage of being experimentally
accessible. Thus a spacecraft might be sent towards the Trojan asteroids region of Jupiter for
example, to detect first how much visible matter is there. Then, from this spacecraft, a second
small one could be launched to an orbit perpendicular to Jupiter’s one, around the Lagrange
region. From the characteristics of its trajectory it can easily be found how much matter,
visible and invisible, is present there. Since the parameters of a trajectory can be measured
very accurately, the benefit of this procedure is that the overall precision of the amount of the
invisible matter, if any, depends only on the precision with which the total mass of the visible
matter there can be determined. An obvious advantage of such an experiment is that it is based
on purely inertial and gravitational measurements, with no assumptions on other interactions,
weak or otherwise, of this hypothetical matter.

2. Some preliminary considerations: the restricted three-body problem and its
osculating quadratic approximation

The three-body problem is, in general, not analytically integrable. This problem, together
with the extension to more bodies, was the initial motivation for Poincaré in his general
considerations for dynamical systems. However in recent years there have been considerable
breakthroughs, as the remarkable paper of Chenciner and Montgomery [11] who were able to
give an exact solution in the special case of three equal masses.

The three-body problem has nine degrees of freedom and so gives rise to a system of
differential ordinary equations of order 18. By working in the center-of-mass system and
making use of the conservation of energy and conservation of angular momentum we can
reduce the order to eight. Furthermore, restricting our consideration to motions which are

3
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Figure 1. The restricted three-body problem.

planar, the order can be reduced to four. This is the best that can be done in general. Even
after all these restrictions the system is not integrable, i.e. it does not possess a complete set
of global isolated conserved quantities. Therefore, the problem is still extremely complicated
and has kept mathematicians busy for several hundred years [2].

Although in this paper we solve numerically the planar restricted three-body problem to
its full extent, let us first review briefly its quadratic approximation [2–5]. Two bodies M1

and M2 are moving in circular orbits of radii a1 and a2 about their center of mass O. The
restricted three-body problem concerns the motion of a third small mass m (� M1,M2) in
their gravitational field. Assuming that the third body is moving in the plane of the first two
(see figure 1), the total force exerted on m will be:

F = − GM1m

|r − a1|3 (r − a1) − GM2m

|r − a2|3 (r − a2). (1)

Let us use a rotating frame of reference with origin at the centre of mass O, in which
the two large masses hold the fixed positions a1 = −a2M2/M1. The angular velocity ω is
determined by Kepler’s law

ω2a3 = G(M1 + M2), a = a1 + a2. (2)

The effective force in this rotating frame is

F ω = F − 2m(ω × ṙ) − mω × (ω × r). (3)

Choosing a set of Cartesian coordinates with origin at O we can write

ω = ωk, r(t) = x(t)i + y(t)j, a1 = −a1i, a2 = a2i.

The equations of motion for the third small body are:

ẍ − 2ωẏ = −∂V

∂x
, ÿ + 2ωẋ = −∂V

∂y
. (4)

where r1 =
√

(x + a1)2 + y2, r2 =
√

(x − a2)2 + y2 and V is the effective potential in the
rotating frame:

V = −1

2
ω2(x2 + y2) − GM1

r1
− GM2

r2
+ C. (5)

The constant C is chosen so that the maximum value Vmax is zero and is attained when
r1 = r2 = a. For the Sun–Jupiter system C � 2.5541 × 107 daMKS. Further ω ≈ 2π/

11.83 years−1, a ≈ 778.33 × 106 km and M1/M2 ≈ 1047. By multiplying equations (4)
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Figure 2. Three-dimensional plot of the effective potential for the Sun–Jupiter system.

by ẋ and ẏ, respectively, and adding, we find the following integral of motion (Jacobi’s
constant):

V + 1
2 (ẋ2 + ẏ2) = C = const, (6)

which is essentially the energy (the Hamiltonian). No other integral of motion for this system
is known. For a given value of C, we obtain

ẋ2 + ẏ2 = 2(C − V ) > 0. (7)

This shows that the motion is restricted to the region bounded by the curve V = C, known as
the Hill curve [12, 13], which corresponds to zero velocity ẋ = ẏ = 0. Since according to our
definition (5) of C the effective potential V is never positive, the equipotential curves (the Hill
curves) correspond to negative values of C. See figures 2, 3 and 4 for the Sun–Jupiter system,
where, to have a closer insight into the problem, we have labelled the effective potential
curves in daMKS units (in deca m2sec−2), since on Earth this corresponds to a difference of
approximately one metre between level curves. For C = 0 the Hill curve degenerates into
two isolated points, usually denoted by L4 and L5, which form the apices of two equilateral
triangles having their other vertices at the large masses:

L4:
(
xL4 , yL4

) =
(

µ
a

2
,

√
3

2
a

)
L5 :

(
xL5 , yL5

) =
(

µ
a

2
,−

√
3

2
a

)
, (8)

where µ = (M1 − M2)/(M1 + M2).
In order to investigate stability around these Lagrange points, we can expand the effective

potential (5) in a Taylor series, for instance about its maximum at
(
xL4 , yL4

)
, and then solve
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Figure 3. Equipotential curves (the Hill curves) for the Sun–Jupiter system.

Figure 4. Equipotential curves around the Lagrange point L4 for the Sun–Jupiter system. The
scale in the x direction was enlarged by a factor of three to make the equipotential curves easily
visible.
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the equations of motion (4) for small departures x̃, ỹ from the equilibrium point

x = xL4 + x̃, y = yL4 + ỹ, (9)

and retain only quadratic terms:

d

dt

⎛
⎜⎜⎝

x̃

ỹ

vx

vy

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 0 1 0
0 0 0 1

3
4ω2 3

√
3

4 µω2 0 2ω

3
√

3
4 µω2 9

4ω2 −2ω 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

x̃

ỹ

vx

vy

⎞
⎟⎟⎠ . (10)

These equations can be further simplified if we perform the change of variables t̃ = ωt (if we
measure the time in units corresponding to a radian, i.e. in 1.8875 years in the case of Jupiter).
Redefining the velocities accordingly, ṽx,y = vx,y/ω, we obtain

d

dt̃

⎛
⎜⎜⎝

x̃

ỹ

ṽx

ṽy

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
3
4

3
√

3
4 µ 0 2

3
√

3
4 µ 9

4 −2 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎝

x̃

ỹ

ṽx

ṽy

⎞
⎟⎟⎠ . (11)

The motion around L4 will be stable according to Laplace’s stability criterion if the four

eigenvalues λ = ±i 1
2

√
2 ±

√
27µ2 − 23 of the evolution matrix are pure imaginary and this

will be true if√
27µ2 − 23 � 2 and µ2 ≡ ((M1 − M2)/(M1 + M2))

2 > 23/27. (12)

The first condition is always satisfied since µ is smaller than one, while the second requires

M1/M2 > (25 +
√

621)/2 ≈ 24.9599. (13)

The stability condition (13) is satisfied for all the planets of our solar system; for instance in
the case of Sun and Jupiter M1/M2 ≈ 1047. The regions around these points are occupied by
the Trojan asteroids whose orbital periods are the same as Jupiter’s, 11.86 years. The periods
of small oscillations about these equilibrium points are given by:

�2 = −ω2λ2 = 1

2
ω2

(
1 ±

√
1 − 27M1M2

(M1 + M2)2

)
, (14)

which yields 11.90 years and 147.4 years, respectively. More detailed studies of the motion
and the stability of the motion around the Lagrange points L4 and L5, in general, or for the
Sun–Jupiter system, in particular, can be found in [14–18].

To have an intuitive picture, the particles gather around the maxima L4 and L5 as clouds
gather around high mountains since the Coriolis force acts perpendicularly to their descent
movement and makes them spin. The role of the Coriolis force can be investigated directly by
artificially weakening it by a factor ξ < 1. The eigenvalues of this artificial evolution matrix
become

λξ = ±ω

2

√
6 − 8ξ 2 ±

√
64ξ 4 − 96ξ 2 + 9 + 27µ2. (15)

One can check that independently of the value of µ the eigenvalues (15) lose their property of
being pure imaginary if the Coriolis force is weakened by a factor ξ <

√
3/2, which of course

is quite different from its true value ξ ≡ 1.
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Figure 5. An academic example: the movement of a particle around a potential hill emerging in a
limited region around a Lagrange point L4.

3. An academic example: a sole potential hill

Many features of the restricted three-body problem are missing in its osculating quadratic
approximation, where the potential is not bounded below and moreover does not follow the
curvature of the trajectory of the planet. In this section we present a ‘Gedankenbeispiel’ half
way toward reality which shows how particles can be trapped around potential maxima due
to the Coriolis force. This example is only illustrative and has a role similar to that of the
potential box in quantum mechanics.

We are especially interested in the metastable states, i.e. non-equilibrium states which
persist for some period of time, since we would like to understand how WIMPs might
accumulate in these regions. Hence, let us consider the effective potential given in equation (5)
but artificially truncated below in order to obtain potential hills of finite height such as the
example shown in figure 5(a). The system of differential equations (4) corresponding to this
potential is then solved using a Runge–Kutta method subject to initial conditions yet to be
determined.

8
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First, since we are merely interested in metastable trajectories and not in trajectories
confined to some given region of the space, we choose the initial positions and velocities so
that the constant C in equation (6) should be small but positive. This is because, according to
the discussion which follows equation (7), positive values of C correspond to complex-valued
Hill curves.

Secondly, to ensure that the trajectory passes near a Lagrange point we chose the initial
positions in the neighbourhood of L4, for example, while the direction of the initial velocity
is taken close to the direction of the velocity component of the eigenvectors of the evolution
matrix from equation (11). Then the differential equations are solved forward and backward
in time.

We preferred to work with neighbourhoods of the eigenvalues instead with their exact
values in order to have a relevant phase space of non-vanishing measure. Many metastable
trajectories were found in this way and one of them is depicted in figure 5(b). In figure 5(c) the
trajectory and the potential are represented on the same graph in order to better visualize the
state of havoc of the trajectory as well as the energy variations along it. The undulating shapes
of the trajectory in the ingoing and outgoing regions are direct consequence of the Coriolis
force.

4. Metastable trajectories for the exact potential

In this section the system of differential equations (4) is solved for the exact effective potential
(5) using again a Runge–Kutta method. The initial conditions were chosen as explained
previously. Two types of metastable trajectories were found: some of which are concentrated
around a Lagrange point similar to that presented in figures 5(b) and (c), and others which
pass from the Lagrange point L4 to L5 similar to the trajectory of the Earth’s second natural
satellite, Cruithne (see figure 6).

The trajectories in the region of the Lagrange points are usually described as being chaotic.
We prefer the term ‘almost chaotic’4, since in spite of the cramped trajectories in these regions,
the solutions x(t) and y(t) of the system of differential equations (4) are reproducible curves
of class C2. Moreover, unlike what happens in the case of chaos, the trajectories are not
recurrent since they eventually leave the entanglement region and continue far away.

The characteristics of these entangled trajectories can be analysed by examining the
Poincaré sections, i.e. the intersections of the curves from the phase portrait with a suitably
chosen transversal manifold [2, 4]. We find here several stable (elliptical) critical points
alternating with hyperbolic (unstable) ones. The hyperbolic critical points are the loci of
intricate entanglements where the system may spend much time.

These ‘pandemonia’ are welcome in our case, since they lead to the increase of the bulk
density of particles there. The Arnol’d diffusion zones [20], which can appear for small
nonzero incidence angles around the planar movement can have the same effect5.

Our main aim in this paper was not to investigate the characteristics of all possible
metastable trajectories, but to show that the physical features of the Lagrange points of large
planets provide an effective mechanism for trapping dark matter, without the intervention

4 Smith [19] would probably call such a region a pandemonium.
5 The Arnol’d diffusion zones are meaningful in problems with three or more degrees of freedom while the planar
three-body problem has only two degrees of freedom. However, even small nonzero angles of incidence of particles
make the problem three-dimensional and in this case the Arnol’d zones are bounded by semi-permeable surfaces
similar to Cantori-like sets. These may significantly obstruct the diffusion of the trajectories and thus enhance the
time spent there by the system. This might lead to an increase of the bulk density of particles near the plane z = 0,
thus emphasizing the practical importance of the planar three-body problem.

9
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Figure 6. A metastable trajectory for the Sun–Jupiter system encompassing the Lagrange points
L4 and L5. Since we are in a rotating frame, free particles, both incident and outgoing, move along
spirals.

of any dissipative process. The depletion/accretion of usual matter in the Trojan satellite
region is treated strictly as a three-body problem and does not take into account the frictions
or any other many body interactions. Consequently, the accumulation of the invisible, but
gravitationally active matter, should be similar as can be seen from direct calculations.

It is interesting to note that according to Monte Carlo simulations [10, 21] the time
necessary for the accretion of ordinary dust and matter in the Trojan region is of the order of
a hundred thousands years, i.e. much shorter than one would expect for phenomena on the
astronomical scale.

5. Conclusion

While meteorites and other space debris can be found in Antarctica or in some stony deserts,
since WIMPs, if they exist, will penetrate Earth’s crust like neutrinos do, they might be found
in the interior of Earth which is not easily accessible to experiments but also in the nonlinear
dynamical nodes of our solar system, such as at the Lagrange points L4 and L5 of the large
planets. As discussed in the introduction, the precision with which a small space probe can
determine the amount of the invisible matter present in these regions is essentially given by
the accuracy of determining the amount of the visible matter existent there. Hence, it might
be worthwhile to land on one of the large Trojan asteroids of Jupiter, Agamemnon, Achilles
or Hektor, to have a better determination of their density and, consequently, of the total visible
mass. Moreover, since each of these Lagrange regions is quite narrow (see figures 4 and
5(b)) we expect that it should not be too difficult to establish a satellite in orbit around it, to
determine the total amount of mass, visible and invisible, present there.

10
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